Genotype-phenotype analysis of F-helix mutations at the kinase domain of TGFBR2, including a type 2 Marfan syndrome familial study

نویسندگان

  • Lin Zhang
  • Ling-Gen Gao
  • Ming Zhang
  • Xian-Liang Zhou
چکیده

PURPOSE Transforming growth factor beta receptor II (TGFBR2) gene mutations are associated with Marfan syndrome; however, the relationship between the mutations and clinical phenotypes are not clear. METHODS Genomic DNA from peripheral blood leukocytes of a Chinese proband with Marfan syndrome, five of the proband's relatives, and 100 unrelated Chinese control subjects were isolated and screened for fibrillin-1 (FBN1) and TGFBR2 gene mutations by direct sequencing, and a genotype-phenotype study was performed following a review of the literature on TGFBR2 mutations in the search area. Also, the structure of TGFBR2 protein before and after gene mutation was analyzed. RESULTS The results identified a novel missense TGFBR2 mutation p.V453E (c.1358T>A) in the proband and two relatives that was located in the F-helix in the kinase domain of TGFBR2. No such genetic change was observed in the unrelated controls. No FBN1 mutation was detected in any of the subjects. Genotype-phenotype analyses indicated that F-helix mutations are related to type 2 Marfan syndrome and Loeys-Dietz syndrome, and these mutations can lead to severe cardiovascular (93.8%) and skeletal (81.3%) lesions and minor ocular lesions (25%). Losartan treatment can slow-down the progression of aortic lesions. CONCLUSIONS The findings extend the mutation spectrum of Marfan syndrome, and that mutations at the F-helix in the kinase domain of TGFBR2 may be associated with the development of severe cardiovascular and skeletal lesions and minor ocular lesions. These findings have implications for genetic testing, diagnosis, and treatment in individuals with transforming growth factor beta (TGF-β) signaling-related disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotype investigations in 457 patients with Marfan syndrome type I and II, Loeys-Dietz syndrome and related disorders.

TGFBR1 and TGFBR2 gene mutations have been associated with Marfan syndrome types 1 and 2, Loeys-Dietz syndrome and isolated familial thoracic aortic aneurysms or dissection. In order to investigate the molecular and clinical spectrum of TGFBR2 mutations we screened the gene in 457 probands suspected of being affected with Marfan syndrome or related disorders that had been referred to our labora...

متن کامل

Informative STR Markers for Marfan Syndrome in Birjand, Iran

Objective(s)Marfan syndrome (MFS) is a severe connective tissue disorder withan autosomal dominant inheritance pattern. Early diagnosis is critical in MFS. Because of the large size of fibrillin-1 gene (FBN1), the uniqueness of mutations, and the absence of genotype-to-phenotype correlations linkage analysis can be very helpful for early diagnosis of MFS. In this study, eight polymorphic marker...

متن کامل

In silico analysis of the potential effects of the disease-associated point mutations on the kinase activity of TGFBR1 and TGFBR2 receptors

Annick Barre, Jean-Philippe Borges, Stéphanie Caze-Subra, Camille Gironde, Pierre Rougé Université de Toulouse; UPS; UMR 152 Pharma-Dev; Université Toulouse 3, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse cedex 09, France Institut de Recherche pour le Développement (IRD); UMR 152 Pharma-Dev; F-31062 Toulouse cedex 09, France TGFBR1 and TGFBR2 mutations associated with Marfan syndrome-...

متن کامل

Quantitative analysis of TGFBR2 mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity.

Mutations in the gene encoding transforming growth factor-beta receptor type II (TGFBR2) have been described in patients with Loeys-Dietz syndrome (LDS), Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). Here, we present a comprehensive and quantitative analysis of TGFBR2 expression, turnover and TGF-β-induced Smad and ERK signaling activity for nine m...

متن کامل

A heterozygous mutation of the elastin gene (eln:p.val154met) fully co-segregates with classic marfan phenotype in a sardinian family: a possible novel disease-gene?

Marfan syndrome (MFS, MIM #154700) is an autosomal dominant disorder of the extra cellular matrix affecting the connective tissue with cardiovascular, skeletal, neurological, integumental and ocular abnormalities.1 More than 85% of MFS cases are causally linked to mutations in the fibrillin-1 gene (FBN1, 15q21.1). In 1994, a second locus (MFS2) (MIM #154705) was found to map at 3p25–p24.22 afte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012